
Snapshot generation in a constructive object-oriented
modeling language

Mauro Ferrari1, Camillo Fiorentini2, Alberto Momigliano2 and Mario Ornaghi2

1 Dipartimento di Informatica e Comunicazione, Università degli Studi dell’Insubria, Italy
mauro.ferrari@uninsubria.it

2 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Italy
{fiorenti,momiglia,ornaghi}@dsi.unimi.it

Abstract CooML is an object-oriented modeling language where specifications
are theories in a constructive logic designed to handle incomplete information.
In this logic we define snapshots as a formal counterpart of object populations,
which are associated with specifications via the constructive interpretation of log-
ical connectives. In this paper, we introduce the “snapshot semantics” of CooML
and we describe a snapshot generation (SG) algorithm, which can be applied to
validate specifications in the spirit of OCL-like constraints over UML models.
Differently from the latter and from the standard BHK semantics, the logic al-
lows us to exploit a notion of partial validation that is appropriate to encodings
characterised by incomplete information. SG is akin to model generation in an-
swer set programming. We show that the algorithm is sound and complete so that
its successful termination implies consistency of the system.

1 Introduction

We are developing the constructive object oriented modeling language CooML
(http://cooml.dsi.unimi.it), a specification language for OO systems [21]. Simi-
larly to UML/OCL [25], CooML provides a framework for the design of system speci-
fications in the early stages of the development process. The language allows the user to
distinguish between internally-defined elements and the problem domain (PD), which
may involve loosely or incompletely defined components. This encourages the selection
of the appropriate level of abstraction as far as specifications are concerned.

CooML follows the spirit of lightweight formal methods [11]: it does not focus on
full formalization, nor on whole system correctness, but emphasizes partiality in anal-
ysis and specification. In the context of OO modeling, both the validation of a spec-
ification and consistency checking can be achieved via the notion of snapshot, i.e. a
population of objects in a given system state that satisfies the specification. Previous
work has used snapshots for validation of UML+OCL models [9], as well as specifica-
tions in JML based on symbolic animation [5].

The novelty of CooML’s approach resides in its semantics, which is related to the
constructive explanation of logical connectives (a.k.a. the BHK interpretation [24]).
Specifically, the truth of a CooML proposition in a given interpretation is explained
by a mathematical object that we call an information term. For the time being, the lat-
ter can be visualized as a sort of proof term inhabiting a type/formula. The underlying
logic is characterized by the way classical and constructive information co-exist, the

main “entry” point being the different way an atomic formula A is given evidence (for
more details we kindly refer the reader to the original formulation of the logic in [16]).
If we call a piece of information the pair I : P, where P is a formula and I is its in-
formation term, then I : P is a particular piece of information, which may be true or
false in a classical interpretation w that we call a world. Thus, we have a notion of a
model of a piece of information based on classical logic. In particular, we use T{F} to
indicate the truth of F ; in fact, T does not contain evidence for F , but it yields a piece
of information true in all the models of F . This introduces a novel and flexible way to
handle incomplete information, a notorious difficulty in other information systems such
as relational databases.

Crucially, the constructive side of the logic allows the identification of snapshots
with information terms, thusly providing a formal counterpart to the intuitive notion of
object populations. We argue that CooML’s proof theoretic snapshot generation may be
advantageous w.r.t. a model-theoretic one, especially in cases where not all the informa-
tion required to define a model is even present. The possibility of treating information
in this less committed way means that we can select only the relevant information and
this may have a cascade of benefits in terms of efficiency of the representation.

The contribution of this paper is twofold. First, we apply the semantics developed
in purely logical terms in [16] to object oriented modeling languages. We model an
OO system specification as a CooML theory T , the system snapshots as the pieces of
information I : T , and the related information content as a suitable set of formulae. We
show that the latter can be seen as the minimum information needed to give evidence
to snapshots and that it is related to snapshot consistency. Secondly, we describe (and
implement) a snapshot generation algorithm (SG); the latter takes as inputs a CooML
theory T , axiomatizing a set of classes in a problem domain PD and the user’s gener-
ation requirements G , which serve an analogous purpose of domain predicates in the
grounding phase of ASP’s [19]. As snapshots should be consistent with respect to PD
and G , we prove that consistency checking is sound (this is not too faraway from ad-
equacy results in the theory of CLP’s) and that SG is complete (i.e., if a consistent
snapshot satisfying the generation requirements exists, it will be generated).

In the rest of the paper Section 2 introduces CooML theories first by example and
then formally, while Section 3 describes the SG algorithm and the theory behind it.
We conclude in Section 4 with some very preliminary connections with other modeling
languages and model generation tools.

2 CooML specifications

In this section we informally present the language via an example adapted from [4],
while we defer to Section 2.1 the formal treatment. The problem domain concerns a
small coach company. Each coach has a specified number of seats and can be used
for regular or private trips. In a regular trip, each passenger has its own ticket and
seat number. In a private trip, the whole coach is rented and there may be a guide.
The corresponding CooML specification is contained in the package coachCompany in
Fig. 1.

2

package coachCompany;
pds{type Person;
Integer numberOfSeats(Coach c) = (* the number of seats of %c *);
Boolean guides(Person p, Trip t) = (* %p guides trip %t *);
Boolean nobooking(Passenger p, Trip t) = (* %p has no booking in %t *);
Boolean vacant(Integer s, Coach c, Trip t) =

(* %s is a vacant seat of %c in %t *);
Boolean booked(Passenger p, Integer s, Coach c, Trip t) =

(* %p booked seat %s of %c in %t *);
<constr name=bookingConstraints language=prolog>
false :- vacant(S,C,T), booked(_P,S,C,T).
false :- booked(P1,S,C,T), booked(P2,S,C,T), not(P1==P2).
false :- isOf(T,’Trip’,[C]), nobooking(P,T), booked(P,_Seat,C,T).

</constr>
}

class Coach{
coachPty: and{

seats: exi{Integer seatsNr; seatsNr = numberOfSeats(this)}
trips: for{Trip trip; trip is Trip(this) --> true} }
Integer getSeats(){ return seats.seatNr }

}
class Trip{ env(Coach coach)
TripPty: case{private:

case{T{exi{Person p; guides(p,this)}}
T{not exi{Person p; guides(p,this)}}}

regular: for{Integer seat; (seat in 1..coach.getSeats()) -->
case{vacant:

vacant(seat,coach,this)
booked:
exi{Passenger p; T{and{p is Passenger(this)

booked(p,seat,coach,this)}}
}}}}}

class Passenger{ env(Trip trip)
PsngrPty: case{c1: nobooking(this,trip)

c2: exi{Integer seat, Coach coach;
T{and{trip is Trip(coach)

booked(this,seat,coach,trip)}}
}}}

Fig. 1: The coachCompany package

To explain our example we need to introduce CooML types. We distinguish among data
types (in our example, Integer and Boolean), PD types (Person), and object types
(Coach, Trip, Passenger). They inherit from the top type Value the identity relation
and the string representation. Data types are “statically” defined, i.e., their values do
not depend on the current state. CooML assumes the existence of an implementation
that evaluates ground terms into values. A PD type extends Value with a set of problem
domain functions. Nothing is assumed about PD types; they may be characterized by a
set of formal or informal loose properties that we call PD constraints, introduced by the
tag <constr>. The special subtype Obj of Value introduces object identities. Objects
are created by CooML classes, which are structured in a single inheritance hierarchy

3

rooted in Obj. The definition of a class C may depend on some environment parameters,
namely C(e) is a class with environment parameters e. If e is a ground instance of the
environment parameters e, then C(e) can be used to create new objects. We write “o is
C(e)” to indicate that o has been created by C(e), while “o instanceof C(e)” means
that o has environment e and has been created by a subclass C’ of C. We call those class
predicates.

In a package data types are assumed to be externally implemented, PD types are
defined in the pds (Problem Domain Specification) section and classes are introduced
by suitable class declarations.
pds declaration and world states. The pds section specifies our general knowl-
edge of the problem domain. It introduces PD types, functions and predicates using
data and class types. In our example we introduce the PD type Person and func-
tions numberOfSeats, guides, . . . The informal descriptions (*...*) use terms of
the global signature provided by the analysis phase [12], where a notation such as %t
links the parameter t of the PD function to the related comment. A <constr> declara-
tion introduces a set of PD constraints representing general problem domain properties
that are not interpreted by CooML, but that could be interpreted by some external tool.
In the example PD constraints are expressed in Prolog assisting the SG algorithm in
filtering out undesired snapshots. The class predicate “o is C(e)” is represented by
the Prolog predicate isOf(o, C, [e]), while “o istanceOf C(e)” is translated into
instanceOf(o, C, [e]). The first constraint says that a coach seat cannot be va-
cant and booked at the same time, the second one excludes overbooking (a seat can be
booked by at most one person), while the third says that the predicate nobooking(P,T)
cannot hold if person P has booked a seat in the coach associated with trip T. In this pa-
per, we assume that the signature ΣT of a CooML theory T (including PD types, data
types and classes) is first order and that we can represent the possible states of the “real
world” by reachable ΣT -interpretations, dubbed world states. Reachability means that
each element of the interpretation domains is represented by some ground terms, in
our case CooML values. In a world state, PD symbols are interpreted over the external
world, data types are interpreted according to their implementation, and class predicates
represent the current system objects. For instance the class predicates
mini is Coach(), t1 is Trip(mini), t2 is Trip(mini), t3 is Trip(mini),
john is Passenger(t1)

represent a small company with a single mini-bus mini, three trips t1,t2,t3 operated
by mini and, so far, only one passenger john associated with trip t1.
class declarations and properties. A class declaration introduces the name C of the
class, its (possible) environment parameters e, its property PtyC(this,e), and its meth-
ods 1. An object o created by C(e) stores a piece of information structured according to
PtyC(o,e), and uses the methods implemented by C(e).

For class properties, CooML uses a prefix syntax, where formulas may be labeled.
Labels are used to refer to subformulas. For example, the label seats is used in the
getSeats method to get seatsNr. A class property P is an atomic formula over ΣT ,
or (recursively) a formula of the form and{P1 . . . Pn}, case{P1 . . . Pn}, exi{τ x;P},
for{τ x;G→P}, T{Pext}, where Pext is a property which may also use negation not and
implication imp. We stress that not and imp cannot be used outside T.

In CooML’s semantics, a property P defines a set of possible pieces of information
of the form I : P, where I is an information term, that is a structure justifying the truth

1 We use the self-reference this as in Java.

4

of P. Each piece of information I : P for P has an information content, a set of simple
properties intuitively representing the minimum amount of information needed to jus-
tify P according to I. In fact, we call simple property an atomic formula of the form
T{Pext}. A simple property S represents a basic information unit, i.e., it has an unique
information term tt where tt is a constant. This means that the only information we
have is the truth of S, and the associated information content is simply the set {S}.
Exemplifying,

tt : t1 is Trip(mini)

has information content {t1 is Trip(mini)} and means that the trip t1 is assigned
to the coach mini in the current world state.

The operator T may enclose a complex property P and indicates that we are inter-
ested only in its truth. Let us consider
tt: T{exi{Person p; guides(p,t2)}} tt: T{not exi{Person p; guides(p,t3)}}
The first piece of information says that t2 is a guided trip without indicating who the
guide is; the second one says that t3 has no guide.

By default2 the truth of a simple property S in a world state w (w |= S) is defined as in
classical logic, by ignoring T (i.e., w |= T{P} iff w |= P}) and interpreting case as ∨,
and as ∧, not as ¬, imp as →, exi as ∃ and for{τ x;G(x)→P(x)} as ∀x(G(x)→ P(x)).

In contrast, non-simple properties are interpreted constructively, by means of infor-
mation terms. A piece of information I : P may have one of the following forms.
Existential. (x,I):exi{τ x; P(x)}, where τ is the type of the existential variable x. The
term x is a witness for x and the information content is the one of I : P(x). For example,

(4,tt) : exi{Integer seatNr; seatNr = numberOfSeats(mini)}
has witness 4 and information content {4 = numberOfSeats(mini)}, signifying that
our mini-bus has 4 passenger seats. Note that, differently from the case of simple prop-
erties, we know the value of x which makes P(x) true.
Universal. ((x1, I1),...,(xn, In)):for{τ x; G(x) → P(x)}, where G(x) is an x-
generator, i.e., a formula true for finitely many x3. The information content is
the union of those of I1 : P(x1), . . . , In : P(xn) and of the domain property
dom(x; G(x); [x1,...,xn]), a special simple property interpreted as ∀x(G(x) ↔
member(x, [x1, . . . ,xn])). For example, the information content of

((t1,tt),(t2,tt),(t3,tt)) : for{Trip trip; trip is Trip(mini) → true}
is {dom(trip; trip is Trip(mini); [t1,t2,t3])}, showing that the domain of
the trip-generator “trip is Trip(mini)” is {t1,t2,t3}. Since the atomic formula
true corresponds to no information, it can be ignored.
Conjunctive. (I1, . . . , In) : and{P1 . . .Pn}. The information content is the union of those
of I j : Pj, for all j ∈ 1..n. For instance, a piece of information for the class property
coachPty(mini) and the related information content IC1 are

((4,tt), ((t1,tt), (t2,tt), (t3,tt))) : and{seats(mini) trips(mini)}
IC1 = {4 = numberOfSeats(mini), dom(trip; trip is Trip(mini); [t1,t2,t3])}

Disjunctive. (k,Ik):case{P1 . . .Pn}. The selector k ∈ 1..n points to the true subformula
Pk and the information content is Ik : Pk’s. For example, if the object john with class
predicate john is Passenger(t1) contains the information term (1,tt), then

2 But one can change this. We do not discuss this issue here for lack of space.
3 In this paper the precise syntax of generators is omitted.

5

(1,tt) : case{c1:nobooking(john,t1) c2: ...}
selects the first sub-property of PsngrPty, with information content
{nobooking(john,t1)}, i.e. john has no booking in trip t1 in the current state.

The information content of classes. Let C(e) be a class with property PtyC(this,e).
We associate with C the class axiom

clAx(C): for{Obj this, τ e; this is C(e) → PtyC(this,e)}
The corresponding pieces of information and information content are those for universal
properties. The piece of information for class Coach and its information content IC2 is:

((mini,CoachInfo)) : for{Obj this; this is Coach() → coachPty(this)}
IC2 = {dom(this; this is Coach();[mini]), 4 = numberOfSeats(mini),

dom(trip; trip is Trip(mini); [t1,t2,t3])}
where CoachInfo:coachPty(mini) is defined as in the conjunctive case.
System snapshots and their information content. Let P be a package introducing a
set of constraints T and the CooML classes C1, . . . ,Cn. We associate with P a CooML
theory TP = 〈thAx,T 〉, where thAx = and{clAx(C1) · · · clAx(Cn)}.

A piece of information I : thAx represents the information content of the whole
system. We call it a system snapshot, to emphasise that the system may evolve through
a sequence I0 : thAx, . . . , In : thAx, A snapshot for our coachCompany system is of
the form:

(I1,I2,I3) : and{clAx(Coach) clAx(Passenger) clAx(Trip)}
and possible information terms I1, I2, I3 are

I1 = ((mini,CoachInfo)), I2 = (([john,t1],(1,tt)))
I3 = (([t1,mini],(2,((1,tt), (2,(john,tt)),(3,tt),(4,tt))))

([t2,mini],(1,(1,tt))),
([t3,mini],(1,(2,tt))))

where [...] denote tuples. A relevant part of the information content for
coachCompany is given in Fig. 2.
dom(x; x is Coach();[mini]), dom(x; x is Passenger();[john]),
dom([x,y]; x is Trip(y);[[t1,mini],[t2,mini],[t3,mini]]),
dom(x; x is Trip(mini);[t1,t2,t3]),
4=numberOfSeats(mini), nobooking(john,t1), vacant(1,mini,t1),
booked(john,2,mini,t1), vacant(3,mini,t1), vacant(4,mini,t1),
T{exi{Person p; guides(p,t2)}}, T{not exi{Person p; guides(p,t3)}}

Fig. 2: Part of the information content of coachCompany.

The above information content could be seen as an “incompletely specified” model
of the coachCompany theory, where numberOfSeats, nobooking, vacant, booked and
class predicates are completely shown, while for guides we have only partial knowl-
edge, expressed by the T-properties, and nothing is said about Person. The relationship
with classical models can be better explained by comparing the constructive and clas-
sical reading of CooML properties. Let T = 〈thAx,T 〉 be a CooML theory. We can
switch to the classical interpretation of thAx, simply by using the T operator, i.e., by
considering the simple property T{thAx}. One can prove that T{thAx} has a reachable
model if and only if IC(I : thAx) has a reachable model, for at least one piece of in-
formation I : thAx. Furthermore, one can prove that IC(I : thAx) is the minimum set of
simple formulas that justifies I as an explanation of thAx.

6

In this context we are mainly interested in the notion of consistency with respect to
the PD constraints T , assuming that the latter can be interpreted as first order sentences.
In our example, we interpret a program clause H : −B1, . . . ,Bn as the universal closure
of B1∧ . . .∧Bn →H, as usual. A system snapshot I : thAx for a theory T = 〈thAx,T 〉 is
consistent if its information content IC(I : thAx) is true in a reachable classical model of
T ; T is consistent if there is a consistent snapshot for it. For example, the above snap-
shot is consistent with respect to the first and second constraint of the pds section, but
not with the third, since both nobooking(john,t1) and booked(john,2,mini,t1)
belong to the information content and isOf(t1,’Trip’,[mini]) follows from the
third domain predicate in Fig 2. In Section 3 we will introduce consistent snapshot
generation and we will show how it is a way of understanding and validating CooML
specifications.

2.1 Formal definitions

Let T = 〈thAx,T 〉 be a CooML theory and ΣT the associated first order signature.
The set of information terms for a property P (IT(P)) is inductively defined as follows,
where x stands for values of x:

IT(P) = {tt}, if P is simple
IT(and{P1 · · · Pn}) = { (I1, . . . , In) | I j ∈ IT(Pj) for all j ∈ 1..n}
IT(case{P1 · · · Pn}) = { (k, I) | 1 ≤ k ≤ n and I ∈ IT(Pk)}
IT(exi{τ x;P}) = { (x, I) | I ∈ IT(P)}
IT(for{τ x;G(x)→P}) = { ((x1, I1), . . . ,(xn, In)) | I j ∈ IT(P) for all j ∈ 1..n}

A piece of information for a ground property P is a pair I : P, with I ∈ IT(P). A collection
is a set of ground simple properties. The information content IC(I : P) is the collection
inductively defined as follows:

IC(tt : P) = {P}, where P is simple
IC((I1, . . . , In) : and{P1 · · · Pn}) =

Sn
j=1 IC(I j : Pj)

IC((k, I) : case{P1 . . . Pn}) = IC(I : Pk)
IC((x, I) : exi{τ x; P(x)}) = IC(I : P(x))
IC(((x1, I1), . . . ,(xn, In)) : for{τ x;G(x)→P(x)}) =

Sn
j=1 IC(I j : P(x j))

∪ {dom(x;G(x); [x1, . . . ,xn])}

The information content IC(I : P) represents the minimum amount of information
needed to get evidence for P according to I. This can be formalized as follows.

Definition 1. We say that a collection C gives evidence to I : P, and we write C B I : P,
iff one of the following clauses holds:

C Btt : P iff P ∈ C
C B (I1, . . . , In) : and{P1 · · · Pn} iff C B i j : Pj for all j ∈ 1..n
C B (k, I) : case{P1 . . . Pn} iff C B I : Pk
C B (x, I) : exi{τ x; P(x)} iff C B I : P(x)
C B ((x1, I1), . . . ,(xn, In)) : for{τ x;G(x)→P(x)} iff dom(x;G(x); [x1, . . . ,xn]) ∈ C

and C B I j : P(x j) for all j ∈ 1..n

7

The information content IC(I : P) represents an information about the current world
state. We equiparate the information content of C to its closure’s under (classical) log-
ical consequence, for C ∗ = {P | C |= P}. We say that C 1 contains less information
than C 2 (written C 1 v C 2) iff C ∗

1 ⊆ C ∗
2. Intuitively, the definition of v is justified

by the fact that an user will “trust” C ∗, whenever he trusts C . We could use a differ-
ent trust-relation, considering different logics. We only need the following properties to
hold:

C ⊆ C ∗ (1)
C 1 ⊆ C ∗

2 implies C 1 v C 2 (2)

Using the above properties, we can prove:

Theorem 1. Let I : P be a piece of information.

1. IC(I : P)B I : P
2. For every collection C , C B I : P implies IC(I : P)v C .

This establishes the minimality of IC(I : P) with respect to v.
Now we can apply the above discussion to the problem of checking snapshots

against constraints. We recall that a snapshot for a CooML theory T = 〈thAx,T 〉 is
a piece of information I : thAx.

Definition 2. Let T = 〈thAx,T 〉 be a CooML theory, and I : thAx a snapshot. We
say that I : thAx is consistent with respect to the constraints T (T -consistent) iff
there exists a reachable model of IC(I : thAx)∪T .

Definition 3. A CooML theory T = 〈thAx,T 〉 is snapshot-consistent iff there is at
least one snapshot I : thAx that is T -consistent.

The latter definition is related to classical consistency by the following result:

Theorem 2. Let T = 〈thAx,T 〉 be a CooML theory. T is snapshot-consistent iff there
is a reachable model of thAx∪T .

3 A snapshots generation algorithm and its theory

A Snapshot Generation algorithm (SG) for a CooML theory T = 〈thAx,T 〉 takes as in-
put the user’s generation requirements and tries to produce T -consistent snapshots that
satisfy such requirements. Roughly, generation states represent incomplete snapshots,
e.g. in logic programming parlance, partially instantiated terms; inconsistent attempts
are pruned, when recognized as such during generation.

Consistency checking plays a central role. It depends on the PD logic and it is dis-
cussed next. In Subsection 3.2 we illustrate the use of snapshot generation for validating
CooML specifications. Finally, in Subsection 3.3 we briefly outline a non deterministic
algorithm based on which sound and complete implementations can be developed.

8

3.1 Consistency check

To recognize inconsistent attempts, SG uses an internal representation of the informa-
tion content of the current generation state S, denoted by INFOS.

Here we briefly discuss a simplified version of consistency check in our Prolog im-
plementation, called SnaC. Let PS be the internal Prolog translation of the information
content INFOS. For this simplified version, we assume that PS is executed by a suitable
meta-interpreter. Without giving the formal details, we notice that INFOS consists of
ground facts, or of clauses of the form H :- eq(t1,t2), or false :- Body, where:

– We use eq to avoid Prolog’s standard unification interfering with Skolem con-
stants. Indeed, the latter represent unknown values coming from the translation of
T{exi{...}} and different constants may represent the same value. In the sim-
plified version, the eq atoms are just collected by the meta-interpreter in a list of
“unsolved equations”.

– The reserved atom false is introduced to detect inconsistency: its finite failure
signals snapshot consistency, conversely, its success corresponds to inconsistency.

Clauses with head false are called integrity constraints and false may occur only as
such. A SnaC representation PS has the following property: if the meta-interpretation of
a goal G succeeds from PS with answer σ and a list L of unsolved equations, then Gσ is
a logical consequence of PS ∪L. Furthermore, consistency is preserved and the models
of PS are models of INFOS (in the declarative reading of PS, we interpret eq as equality
and false as falsehood).

As an example, let us consider the SnaC representation PcComp (Fig. 3) of the infor-
mation content of the coachCompany package (Fig. 2). The facts and the constraints in
the first two rows come from the translation of domain properties. For example, the first
row contains the translation of dom{x; x is Coach(), [mini])}. The other facts
come from the translation of atoms. The clause guides(X,t2):- eq(X,p0) translates
T{exi{Person p; guides(p,t2)}}, where p0 is a fresh Skolem constant. Finally,
false :- guides(P,t3) translates T{not exi{Person p; guides(p,t3)}}.

isOf(mini,’Coach’,[]). false :- isOf(X,’Coach’,[]), not(member(X,[mini])
isOf(john ’Passenger’,[mini]). ...
numberOfSeats(mini,4). nobooking(john,t1). vacant(1,mini,t1).
booked(john,2,mini,t1). vacant(3,mini,t1). vacant(4,mini,t1).
guides(X,t2):- eq(X,p0).
false :- guides(P,t3).

Fig. 3: The SnaC representation PcComp.

Let us analyze the three possible outcomes of consistency check starting from the
example in Fig. 3:

(a) false finitely fails for the program PcComp. This entails that false does not be-
long to the minimum model M of PcComp∪{eq(X,X)}. The latter contains all the
ground atoms in Fig. 3 as well as guides(p0,t2). Since M is a model of PcComp,
it is also a model of the information content of coachCompany, by the properties of
the translation.

(b) If we add the constraint

9

c1) false :- vacant(S,C,T),booked(_P,S,C,T).

to PcComp, the goal false succeeds from program PcComp ∪ {c1}, collecting the
empty set. This implies that the snapshot corresponding to the information content
of coachCompany is inconsistent w.r.t. c1.

(c) If we add the constraint

c2) false :- guides(P,T), isOf(P,’Passenger’,T).

the goal false succeeds from program PcComp∪{c2}, collecting [eq(john,p0)].
This implies that false belongs to the minimum model M of PcComp ∪ {c2} ∪
{eq(john,p0)}. The equality eq(john,p0) is returned to the user as a source of
inconsistency.

The above discussion is reflected in the following theorem:

Theorem 3. Let T = 〈thAx,T 〉 be a CooML theory, I : thAx a snapshot and P a
program containing the translation of IC(I : thAx) and the PD constraints of thAx.

1. If the goal false finitely fails from P, then I : thAx is T -consistent.
2. If the goal false succeeds from P collecting a set of constraints U , then I : thAx

is inconsistent with respect to T ∪U .

In the first case, SnaC accepts I : thAx as a T -consistent snapshot. In the second
one, if U is empty we get inconsistency. If U is not empty, it is given as an answer. We
omit the proof, since it is somewhat implicit in the above discussion.

A result similar to the above theorem can be obtained admitting a larger class of
simple properties and PD constraints, using techniques similar to those used in CLP,
when one sees a CLP system as constituted by a constraint system [8]. Roughly, we
can consider T as a program of a CLP system using, as calculus, an extension of
the standard logic programming operational semantics and, as constraint system, the
Herbrand universe under CET, modified to deal with Skolem constants.

3.2 Validating specifications via the SG

One of the purposes of snapshot generation is understanding and validating a CooML
specification. To this aim, the user can specify suitable generation requirements, to
reduce the number of the generated examples to a manageable size and show only the
aspects he is interested in. We explain the language of generation requirements and its
semantics through our example. It may be helpful to keep in mind the analogy with how
an answer set program is constructed to direct grounding.

The number of the generated snapshots can be limited by means of the the special
atom choice(A). This plays the role of domain predicates in ASP. The SG algorithm
will instantiate A according to its axiomatization. For example:
choice(isOf(C,’Coach’,[])) :- member(C,[c1,c2]).
choice(isOf(P,’Passenger’,[])) :- member(P,[anna,john,ted]).
choice(isOf(T,’Trip’,[C])) :- member((T,C), [(t1,c1),(t2,c2),(t3,c1)]).
choice(numberOfSeats(c1,3)).
choice(numberOfSeats(c2,60)).

10

instructs SG to generate one coach c1 with 3 seats and possible trips t1, t3, and another
c2 with 60 seats and trip t2. The declarative meaning of choice is given by the axiom
schema A → choice(A), which, together with the user’s definition of choice, sets up
to the generation requirements. The generated snapshots will satisfy the PD constraints,
as well as the generation requirements.

Once the SG algorithm loads a CooML theory and the user’s generation require-
ments, it can be queried with generation goals. A sample goal is:

(g1) [[3,tt], Trips] : isOf(C,’Coach’,[]).

where Prolog lists represent information terms. Since [3,tt]:seats(C) has in-
formation content 3 = numberOfSeats(C), the query looks for the information
Trips:trips(C) for every coach C with 3 seats. More precisely, the G-goal includes
both a generation goal (generate all the coaches C with 3 seats that satisfy the generation
requirements) and a query (for each C, show the information on the trips assigned to it).
An answer to g1 is:

Trips = [[t1,tt]] and C = c1

with information content

isOf(c1,’Coach’,[]), isOf(t1, ’Trip’, [c1])

Although SG fully generates the snapshot, building information terms for all the
classes in the package, we omit it for conciseness. If the user asks for more solutions,
all the possible snapshots will be shown. In the above example, there are two more
solutions, where c1 has no assigned trip and c1 has two.

We now sketch some ways in which the SG can be used in the process of system
specification and development. This will be the focus of future work.

Validating Specifications The goal is to show that a CooML theory “correctly” mod-
els the problem domain. Validation is empirical by nature: it relates the theory to the
modeled world. The idea is to generate models that satisfy given generation require-
ments and check if they match the user expectations. To this aim, it’s useful to tune
the generation requirements to separately consider various aspects that can be under-
stood within a small, “human viable” number of examples, as usual in this context [9].
For instance, concentrate on the validation of the booking part of the CoachCompany
package. In particular, we can find some supporting evidence of the correctness of the
specification in a match between the expected and actual number of snapshots, where
parameters of the latter are taken as small as possible while preserving meaningfulness.
Naturally, snapshots can be used as inputs to tools for automatic, specification-based
testing generation, in the spirit of [20].

Partial and Full Model Checking As traditional in software model checking, here
the goal is to show that, under the assumption of the generation requirements, no
snapshot satisfies an undesired property. This is obtained if the SG finds a snapshot-
inconsistency, i.e., it halts without exhibiting any snapshot. Equivalently, one can prove
that every snapshot satisfies a given property, by showing that its negation is snapshot-
inconsistent. We call this approach partial model checking, because in general snapshot
consistency may depend on the selection of generation requirements. We may perform
full model checking if the set of generated snapshots is representative of all models of
the theory w.r.t. the property under consideration.

11

3.3 A prototype algorithm

Now we describe a general schema for the Snapshot Generation Algorithm, whereas
SnaC is just a first rough implementation. Let T = 〈thAx,T 〉 be a CooML theory,
where thAx = and{clAx(C1), . . . ,clAx(Cn)}. Its information terms are represented by
sets of G-goals that we call populations. The generation process starts from a set P0 of
G-goals to be solved, i.e. to become grounded. SG gradually instantiates P0, possibly
generating new goals. It divides the population in two separate sets: TODO, containing
the G-goals not solved yet, DONE, containing the solved ones. A generation state has
the form S = 〈DONE,TODO,CLOSED, INFO〉, where:

– CLOSED is a set of predicates closed(C,e). Such a predicate is inserted in CLOSED
when all the objects with creation class C(e) have been generated. It prevents the
creation of new objects of class C(e) in subsequent steps.

– INFO is the representation in the PD language of the information content of DONE,
i.e., for every I : isOf(o,C,e) ∈ DONE, IC(I : PtyC(o,e))⊆ INFO.

The following definitions are in order:

– A state S is in solved form if TODO = /0.
– A state S has domain Dom(S) = {isOf(o,C,e) | I : isOf(o,C,e) ∈ DONE ∪

TODO}.
– 〈DONE1,TODO1,CLOSED1, INFO1〉 � 〈DONE2,TODO2,CLOSED2, INFO2〉 iff:

1. DONE1 ⊆ DONE2, Dom(S1)⊆ Dom(S2), INFO1 ⊆ INFO2;
2. If closed(C,e) ∈ CLOSED1, then isOf(o,C,e) ∈ Dom(S1) iff isOf(o,C,e) ∈
Dom(S2).

The SGA starts from initial state S0 = 〈 /0,TODO0, /0, /0〉 and yields a solution
S = 〈DONE, /0,CLOSED, INFO〉 such that S0 � S; since TODO = /0, for every I :
isOf(o,C,e) ∈ TODO0, DONE contains a ground information term (I : isOf(o,C,e))σ
solving it. The algorithm computes a solution of S0 that is minimal with respect to �,
through a sequence of expansion steps. The latter are triples 〈S, I : isOf(o,C,e), S′〉
s.t.:

p1. I : isOf(o,C,e) ∈ TODO (the selected goal);
p2. (I : isOf(o,C,e))σ ∈ DONE′ and I : isOf(o,C,e) 6∈ TODO′ (it has been solved);
p3. S ≺ S′ and, for every S∗ in solved form, S ≺ S∗ � S′ entails S∗ = S′ (no solution is

ignored).

The listing for a non deterministic SGA based on expansion steps is next.

SG (〈thAx,T 〉, G , ToDo0)
1 T hy = thAx; PDAx = T ∪G ; S = 〈 /0,ToDo0, /0, /0〉; UC = /0;
2 while ToDo 6= /0 do
3 if error(S) fail;
4 else % Generation Step:
5 Choose I : isOf(o,C,e) ∈ ToDo and compute 〈S, I : isOf(o,C,e), S′〉;
6 S = S′;
7 if globalError(S) fail;
8 else return S, UC

12

TODO0 are the G-goals to be solved under theory 〈thAx,T 〉 and generation require-
ments G . The variable UC stores the “unsolved constraints” generated by the “error
tests” error(S) and globalError(S). They check consistency against “local” and
“global” integrity constraints. The error must be monotonic, i.e., error(S) and S � S′

entails error(S′); globalError applies only to states in solved form.
The SGA is a general schema, whose core is the implementation of expansion steps

and error predicates. The latter use the integrity constraints false :- ... to detect
inconsistency and are based on a generalization of the ideas presented in Section 3.1.
A call to an error predicate either returns “true” when inconsistency is detected, or up-
dates UC and returns “false”. When a state S in solved form is reached, SG returns UC
as an answer; if it is empty, S is consistent. The current implementation could be im-
proved, namely in detecting more than the trivial inconsistencies and no simplification
is supported.

To state the adequacy results, we introduce some additional notation (ITP), which
associates a class C j and population P their information terms:

ITP(P,C j) = [[[o j1 |e j1],Tj1], . . . , [[o jk |e jk],Tjk] | Tail]
ITP(P) = [ITP(P,C1), . . . , ITP(P,Cn)]

where {Tj1 : isOf(o j1 ,C j,e j1), . . . ,Tjk : isOf(o jk ,C j,e jk)} is the set of G-goals of P
with class C j; if no G-goal with class C j belongs to P, then ITP(P,C j) = [Tail].

Theorem 4 (Correctness). Let S∗ = 〈DONE∗, /0,CLOSED∗, INFO∗〉 be a state com-
puted by SG with theory T = 〈thAx,T 〉 and generation requirements G , and let
I∗ = ITP(DONE∗) be the information term of the generated population DONE∗. Then,
either UC is empty and I∗ : thAx is G ∪T -consistent, or I∗ : thAx is inconsistent with
respect to G ∪T ∪UC.

The proof easily follows assuming that for every state S: (i) INFOS satisfies G ,
by the way SG performs grounding; (ii) when error(S) or globalError(S) returns
“true”, then INFOS is inconsistent with respect to T ; (iii) when globalError(S) re-
turns “false”, then UC is empty and INFOS ∪T is consistent, or INFOS ∪T ∪UC is
inconsistent.

Theorem 5 (Completeness). Let S0 = 〈 /0,TODO0, /0, /0〉 be an initial state of
SG with theory T and generation requirements G . If there is a state S =
〈DONE, /0,CLOSED, INFO〉 such that S0 � S, then there is a computation of SG reaching
a state S∗ in solved form such that S0 � S∗ � S.

The proof of Theorem 5 follows from the above properties p1, p2, p3.

4 Related work and conclusion

We have presented the semantics of the object oriented modelling language CooML, a
language in the spirit of the UML, but based on a constructive semantics, in particu-
lar the BHK explanation of logical connectives. We have introduced a proof-theoretic
notion of snapshot based on populations of objects and information terms, from which
snapshot generation algorithms can be designed. More technically, we have introduced

13

generation goals and the notion of minimal solution of such a goal in the setting of a
CooML specification, and we have outlined a non-deterministic generation algorithm,
showing that finite minimal solutions can be, in principle, generated. One needs a con-
straint language in order to specify the general properties of the problem domain, as
well as the generation requirements. In an implementation of the SGA, a consistency
checking algorithm is assumed, which either establishes the consistency/inconsistency
of the current snapshot, or collects a set of unsolved constraints.

The relevance of SG for validation and testing in OO software development is
widely known. The USE tool [9] for validation of UML+OCL models has been recently
extended with a SG mechanism; differently from us, this is achieved via a procedural
language. Other animation tools include [5] w.r.t. JML specification. In [2] the spec-
ification of features models are translated into SAT problems; tentative solutions are
then propagated with a Truth Maintenance System. Related work is also [17], where
design space specs are seen as trees whose nodes are constrained by OCL statements
and BDD’s used to find solutions.

Snapshot generation is only one of the aspects of CooML, once we put our software
engineering glasses on and see it more generally as a specification rather than modeling
language [10,13]. Here we have not considered methods, although the underlying logic
supports a clean notion of correct query methods, namely methods that do not update
the system state, but extract pieces of information from it. The existence of a method
M answering P (i.e., computing I : P) is guaranteed when P is a constructive logical
consequence of thAx. Moreover, M can be extracted from a constructive proof of P.
The implementation of query and update methods is a crucial part of our future work.

We plan to improve and extend the snapshot generation algorithm. There are two
directions that we can pursue; first, we can fully embrace CLP as a PD logic, strengthen-
ing the connection that we have only scratched in Section 3.1. In the current prototype,
there is little emphasis on the simplification of unsolved constraints. This could be par-
tially ameliorated by the introduction of CLP, in particular over finite domains. More
in general, it is desirable to understand the connections between Theorem 3 and the
notion of satisfaction-completeness in constraint systems [8]. Another direction comes
from the relation between CooML’s approach to incomplete information and answer
set programming [1, 19], in particular disjunctive LP [14, 23]. A naive extension of the
SGA to this case would lead to inefficient solutions, yet the literature offers several
ways constraints and ASP can interact [6, 15, 18]. We may explore the possibility of
combining snapshot generation with SAT provers, to which we may pass ground un-
solved constraints when global consistency is checked. There is also the more general
issue of the relationships between information terms and stable models, in particular
partial stable models [22], in the context of partial logics [3, 7].

More information about the project can be found at http://cooml.dsi.unimi.it,
while http://cooml.dsi.unimi.it/sgcooml.html contains additional material
pertaining to the present paper.

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. CUP,
2003.

14

2. D. S. Batory. Feature models, grammars, and propositional formulas. In J. H. Obbink and
K. Pohl, editors, SPLC, volume 3714 of LNCS, pages 7–20. Springer, 2005.

3. S. Blamey. Partial Logic. In D. M. Gabbay and F. Guenthner, editors, Handbook of Philo-
sophical Logic Volume 3: Alternatives To Classical Logic, pages 1–70. D. Reidel Pub., 1986.

4. A. Boronat, J. Oriente, A. Gómez, I. Ramos, and J. A. Carsı́. An algebraic specification of
generic OCL queries within the Eclipse modeling framework. In A. Rensink and J. Warmer,
editors, ECMDA-FA, volume 4066 of LNCS, pages 316–330. Springer, 2006.

5. F. Bouquet, F. Dadeau, B. Legeard, and M. Utting. JML-testing-tools: A symbolic animator
for JML specifications using CLP. In N. Halbwachs and L. D. Zuck, editors, TACAS, volume
3440 of Lecture Notes in Computer Science, pages 551–556. Springer, 2005.

6. F. Buccafurri, N. Leone, and P. Rullo. Strong and weak constraints in disjunctive datalog.
In J. Dix, U. Furbach, and A. Nerode, editors, LPNMR, volume 1265 of Lecture Notes in
Computer Science, pages 2–17. Springer, 1997.

7. M. Fitting. Partial models and logic programming. Theor. Comput. Sci., 48(3):229–255,
1986.

8. T. Fruewirth and S. Abdennadher. Essentials of Constraint Programming. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2003.

9. M. Gogolla, J. Bohling, and M. Richters. Validating UML and OCL models in USE by
automatic snapshot generation. Software and System Modeling, 4(4):386–398, 2005.

10. J. V. Guttag and J. J. Horning. Larch: languages and tools for formal specification. Springer-
Verlag New York, Inc., New York, NY, USA, 1993.

11. D. Jackson and J. Wing. Lightweight formal method. IEEE Computer, April 1996.
12. C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development. Prentice Hall, Upper Saddle River, NJ, 2004.
13. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a behavioral interface

specification language for Java. SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.
14. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV

system for knowledge representation and reasoning. ACM Trans. Comput. Log., 7(3):499–
562, 2006.

15. V. W. Marek, I. Niemelä, and M. Truszczynski. Logic programs with monotone cardinality
atoms. In V. Lifschitz and al., editors, LPNMR, volume 2923 of LNCS, pages 154–166.
Springer, 2004.

16. P. Miglioli, U. Moscato, M. Ornaghi, and G. Usberti. A constructivism based on classical
truth. Notre Dame Journal of Formal Logic, 30(1):67–90, 1989.

17. S. Neema, J. Sztipanovits, G. Karsai, and K. Butts. Constraint-based design-space explo-
ration and model synthesis. In R. Alur and I. Lee, editors, EMSOFT, volume 2855 of Lecture
Notes in Computer Science, pages 290–305. Springer, 2003.

18. I. Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell., 25(3-4):241–273, 1999.

19. I. Niemelä and P. Simons. Smodels - an implementation of the stable model and well-founded
semantics for normal LP. In LPNMR, pages 421–430, 1997.

20. J. Offutt and A. Abdurazik. Generating tests from UML specifications. In R. France and
B. Rumpe, editors, Proc. of UML’99, volume 1723 of LNCS, pages 416–429. Springer, 1999.

21. M. Ornaghi, M. Benini, M. Ferrari, C. Fiorentini, and A. Momigliano. A constructive object
oriented modeling language for information systems. ENTCS, 153(1):67–90, 2006.

22. T. C. Przymusinski. Well-founded and stationary models of logic programs. Ann. Math.
Artif. Intell., 12(3-4):141–187, 1994.

23. F. Ricca, N. Leone, V. D. Bonis, T. Dell’Armi, S. Galizia, and G. Grasso. A DLP system with
object-oriented features. In C. Baral, G. Greco, N. Leone, and G. Terracina, editors, LPNMR,
volume 3662 of Lecture Notes in Computer Science, pages 432–436. Springer, 2005.

24. A. S. Troelstra. From constructivism to computer science. TCS, 211(1-2):233–252, 1999.

15

25. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modelling with UML.
Object Technology Series. Addison-Wesley, Reading/MA, 1999.

16

A Proofs of the theorems

In this appendix we prove the theorems of the paper Snapshot generation in a construc-
tive object-oriented modeling language, M. Ferrari, C. Fiorentini, A. Momigliano and
M. Ornaghi, submitted to LOPSTR 2007.

A.1 Proofs of the theorems in Section 2.1

Theorem 1. Let I : P be a piece of information.

1. IC(I : P)B I : P
2. For every collection C , C B I : P implies IC(I : P)v C .

Proof. Point 1) can be easily proved by induction on P.
We prove Point 2) by using properties (1) and (2) of C ∗. By Property (2), it suffices to
show that:

(*) For every collection C , C B I : P implies IC(I : P)⊆ C ∗.

We prove (*) by induction on P. The base case I : P = tt : P follows by Property (1).
Let us assume C B (I1, . . . , In) : and{P1 . . . Pn}. Since C B I j : Pj for all j ∈ 1..n, by
induction hypothesis IC(I j : Pj) ⊆ C ∗ for all j ∈ 1..n, hence

S
1≤ j≤n IC(I j : Pj) ⊆ C ∗,

that is IC((I1, . . . , In) : and{P1 . . . Pn})⊆ C ∗.
If C B (k, I) : case{P1 . . . Pn} then C B I : Pk and, by induction hypothesis, we have
IC(I : Pk)⊆ C ∗, hence IC((k, I) : case{P1 . . . Pn})⊆ C ∗.
The remaining cases are similar.

Lemma 1. Let w be a reachable model state and P a CooML property. Then w |= P iff
there is a piece of information I : P such that w |= IC(I : P).

Proof. By induction on the structure of P. Here we prove the “only if” part (the “if”
statement is similar). The where P is a simple property is trivial.
Assume that w |= and{P1 . . . Pn}. Since and is interpreted as ∧, we get w |= Pj, for all
j ∈ 1..n. By induction hypothesis, for every j ∈ 1..n there is a piece of information I j : Pj
such that w |= IC(I j : Pj). Thus, w |=

S
1≤ j≤n IC(I j : Pj), namely w |= IC((I1, . . . , In) :

and{P1 . . . Pn}).
Suppose w |= case{P1 . . . Pn}. Since case corresponds to ∨, there is k ∈ 1..n such
that w |= Pk; by induction hypothesis, there is a piece of information I : Pk such that
w |= IC(I : Pk), hence w |= IC((k, I) : case{P1 . . . Pn}).
Let w |= exi{τ x; P(x)}. Since exi is interpreted as ∃ and w is reachable, there is a tuple
of terms x such that w |= P(x). By the induction hypothesis, there exists a piece of infor-
mation I : P such that w |= IC(I : P(x)), and this implies w |= IC((x, I) : exi{τ x; P(x)}).
Let w |= for{τ x;G(x)→P(x)}. By definition of G, there is a list of terms L = [x1,
. . . ,xn] such that w |= x iff w |= member(x,L), hence w |= dom(x;G(x);L). Moreover,
for all j = 1..n, since w |= G(x j), we have w |= P(x j). By the induction hypothesis, for
every j = 1..n there exists a piece of information I j : Pj such that w |= IC(I j : P(x j)).
We set

I : P = ((x1, I1), . . . ,(xn, In)) : for{τ x;G(x)→P(x)}
and the assertion is proved.

17

By the previous lemma we get:

Theorem 2. Let T = 〈thAx,T 〉 be a CooML theory. T is snapshot-consistent iff there
is a reachable model of thAx∪T .

A.2 Proof of Theorem 3 in Section 3.1

Let us indicate by M the meta-interpreter assumed in Section 3.1. In the simplified
version considered in this paper, we have:

1. In a theory T = 〈thAx,T 〉, the PD constraints T are directly expressed in the
form of logic program clauses.

2. A reachable model of IC(I : thAx) is also a reachable model of the SnaC repre-
sentation of IC(I : thAx), where reachability is with respect to the signature of the
CooML theory T = 〈thAx,T 〉 enriched by a denumerable set of Skolem constants.

3. A model of the SnaC representation that interprets false as falsehood and eq as
the identity 4 is a model of IC(I : thAx).

4. Skolem constants may occurr only within eq-atoms and the latter may occurr only
in the body of clauses of the form H :- eq(t, t ′).

5. When M selects an eq-atom E, it “solves” E just by collecting it. For the other
selected atoms, M behaves in the standard way.

6. By 4 and 5, a goal G succeeds for a SnaC program P with M and a (possibly
empty) set of collected equations U if and only if it succeeds for the standard
logic program P∪{eq(,)}. Moreover, for every computed a.s. σ of G for P
with M and collected equations U , Gσ suceeds for the standard program P∪U .

We can prove our theorem.

Theorem 3. Let T = 〈thAx,T 〉 be a CooML theory, I : thAx a snapshot and P the
program containing the translation of IC(I : thAx) and the PD constraints of thAx.

1. If the goal false finitely fails from P with meta-interpreter M, then I : thAx is
T -consistent.

2. If the goal false succeeds from P with M collecting a set of constraints U , then
I : thAx is not consistent with respect to T ∪U .

Proof. 1. Since false fails for P with M, then it fails for P∪{eq(X,X)}. Thus the
minimum Herbrand model HP of P∪{eq(X,X)} is a reachable model of P that
interprets eq as the equality and false as falsehood. By the porperties of the trans-
lation, HP is a model of IC(I : thAx), i.e., it is a reachable model of T that satisfies
IC(I : thAx), and we get T -consistency.

2. In this case, false belongs to the minimum Herbrand model of P∪U . Thus it
belongs to all the reachable models of P∪U . Since the models of T ∪ IC(I : thAx)
inerprets false as falsehood, by 2 no reachable model of T ∪ IC(I : thAx) exists.

In the non-simplified version, Skolem constants are treated under the control of a
suitable meta-predicate holds, which stores in the generation state of SnaC the “un-
solved” equations. Furthermore, some immediate simplifications are applied when pos-
sible.

4 The standard first order logic identity, we do not assume Clark’s Equality Theory for Skolem
constants.

18

A.3 Proofs of the theorems in Section 3.3

The proof of Theorem 4 is almost immediate, assuming (i), (ii), (iii) in Section 3.3. Here
we outline an implementation of the error predicates which satisfies (ii), (iii) and uses
the simplified version of consistency checking considered in Section 3.1. Following the
ideas of Section 3.1, we can implement a check false(S,U) predicate invoking the
false head of the integrity constraints occurring in INFOS∪T 5 and returning the col-
lected equations as answer substitutions. More precisely, U = U is an answer substitu-
tion of check false(S,U) iff the goal false succeeds for INFOS∪T with M and col-
lected U (see Section A.2). The globalError(S) predicate calls check false(S,U)
(considering the integrity constraints in the PD or in INFOS) to compute the an-
swers U = U1, . . . , U = Un. If one of them is empty, globalError(S) exits returning
“true”, otherwise it stores the answers in UC and exits returning “false”. The predicate
error(S) behaves in the same way. The only difference is that it checks only the mono-
tonic integrity constraints. The logical reading of a non-empty UC = {U1, . . . ,Un} is
the formula (∃c1 U1)∨ ·· · ∨ (∃cn Un), where c j are the Skolem constants occurring in
U j. We will indicate by UCL the logical reading of UC.

Theorem 4 (Correctness). Let S∗ = 〈DONE∗, /0,CLOSED∗, INFO∗〉 be a state com-
puted by SG with theory T = 〈thAx,T 〉 and generation requirements G , and let
I∗ = ITP(DONE∗) be the information term of the generated population DONE∗. Then,
either UC is empty and I∗ : thAx is G ∪T -consistent, or I∗ : thAx is inconsistent with
respect to G ∪T ∪UCL.

Proof. It sufficies to prove that the implementation outlined above satisfies (i), (ii), (iii).
Concerning (i), we still assume that the grounding procedure of SG is implemented in
such a way that the generation constraints are satisfied in every generated state. Con-
cerning (ii), it can be proved as follows. If globalError(S) (error(S)) exits with
“true”, then there is an answer U = U with U = /0; by 2. of Theorem 3, we get that
INFOS is inconsistent with respect to T (for globalError) or the monotonic part of
T (for error). Concerning (iii), we have two cases. Case 1: UC is empty. We have
to prove that INFOS is consistent with respect to T ; this follows from 1 of Theorem
3 and from the fact that UC is empty iff check false(S,U) finitely fails. Case 2:
UC = {U1, . . . ,Un}. We have to prove that INFOS ∪T ∪UCL is inconsistent; this fol-
lows from the fact that INFOS∪T ∪U j is inconsistent for 1≤ j ≤ n (by 2. of Theorem
3) and from the fact that we always choose a fresh name when a Skolem constant is
introduced.

Theorem 5 (Completeness). Let S0 = 〈 /0,TODO0, /0, /0〉 be an initial state of
SG with theory T and generation requirements G . If there is a state S =
〈DONE, /0,CLOSED, INFO〉 such that S0 � S, then there is a computation of SG reaching
a state S∗ in solved form such that S0 � S∗ � S.

Proof. We show that, starting from the state S0, we can compute a sequence of states
Sk = 〈DONEk,TODOk,CLOSEDk, INFOk〉, with 0 ≤ k ≤ n, such that:

(i). S0 � Sk � S for every 0 ≤ k ≤ n;

5 T are the (clauses in) the PD constraints.

19

(ii). DONEk ⊂ DONEk+1 ⊆ DONE for every 0 ≤ k ≤ n−1.
(iii). TODOn = /0;

Note that (ii) guarantees the finiteness of the computation. Suppose that the states
S0, . . . ,Sk have already been defined. If TODOk = /0, we set n = k and the computa-
tion halts. Otherwise, let I : isOf(o,C,e) ∈ TODOk and let Sk+1 be the state such that
〈Sk, I : isOf(o,C,e), Sk+1〉 is an expansion step of SG. By properties (2) and (3) in
the definition of expansion step, (i) and (ii) follow. We take S∗ = Sn and the theorem is
proved.

20

