Applying ASP to UML Model Validation

Mario Ornaghi Camillo Fiorentini Alberto Momigliano and
Francesco Pagano

Dipartimento di Scienze dell'Informazione, Universita degli Studi di Milano, Italy

LPNMR'09 — Potsdam, September 15

Motivations

We apply ASP to model validation in a CASE setting.

The aim is to evaluate the correctness of formal specifications (models)
with respect to their requirements.

e Model: UML class diagrams with constraints (e.g. in OCL)

- A diagram represents an abstraction of the problem domain
- An objects diagram represents a snapshot of the system
- legal snapshots: snapshots that satisfy the constraints

@ In general, model validation can be only empirical: it is performed by
comparing the formal model with the user’s expectations.

@ Tools for snapshot generation are crucial for model validation.

Our contribution: the MSG generator

We are developing a snapshot generator for UML models called “MSG"
(“Milano Snapshot Generator").

o It employs DLV-Complex as a generator engine (answer sets
represent the legal snapshots).

DLV-Complex = DLV + external functions, lists, ...

@ To represent UML class diagrams, we introduce the intermediate
language

DLVExi = DLV-Complex + polymorphic types
+ existential clauses

@ Our aim is to minimize the generation of isomorphic snapshots

Validation by MSG: a quick overview

Given a UML model M an a set of Generation Requests G, MSG outputs
all the legal snapshots of M satisfying G.
@ The GR are needed to make the number of snapshots finite.

@ The intermediate language DLVEXi allows us to decouple the
representation of UML models from the GR language.

Generation
Requests

Example: the Internet System Provider

A Provider offers some Service(s) at a certain price.
A Customer chooses one of these services and he is charged a
Bill according to his SurfRecord and the download rate.

The UML model
Only multiplicity constraints are used

Service 1 1 Bill
price: float 1 amount: float
1..% |1 1
|1
Customer
1, .% id: int L
|-nane: string |
|1
1 1 1 1
Provider |1 1. .« |SurfRecord
rate: int

Example: the Internet System Provider

Some Generation Requests

The GR suggest a finite set of possible object identifiers (OID) and a
finite set of attribute values, in order to get finitely many models.

Requests on OID

Possible providers: provider0
Possible customers: customerl, customer2
Possible bills: billil, bill2

Requests on attribute values

Ve : Customer (c.id € {10,20})
Vc : Customer (c.name € { bob, ted})

Example: the Internet System Provider

Some (non-isomorphic) snapshots generated by MSG

service0
price = 25
billo customero """ :
id = rovider0
amount = 100 6] = 19
name = ted M
surfRecord0
rate = 10
Snapshot 1

Snapshot 2

Validation

Do the generated snapshots fit with user’s expecations?
Yes = the specification is OK

No = the specification must be revised
(add new constraints, ...)

Note: If no snapshots are generated, the UML model is inconsistent.

Example: the Internet System Provider

In snapshot 2, the two customers have the same id:

Fix: add to the UML model the constraint

Y1, ¢ : Customer (¢.id = .id = =)

MSG architecture

Specification

——
p—

Snapshots

UML tool
BOUML

XMI snapshots

3 XMl model

DLVExi program

XMI2DLVEXI
(Java)

as2xmi (Java)

TODLY
(Prolog)

DLV-Complex
Program

Gen. requests

MSG architecture

e BOUML
Used to design UML diagrams with constraints and to generate the
corresponding XMI representations.

o XMI2DLVEXI (Java)
It translates an XMI model M into a DLVEXi program Ep;, which is
a faithful representation of M
Every legal snapshot of M is represented by an “answer set” of
Em and every “answer set” of Ep represents a legal snapshot
of M.

e TODLV (Prolog)
It translates the program Eps and the generation requirements G
into a DLV-Complex program P ¢.
The answer sets of Py, are the answer sets of Ey that
satisfy G.

Related work

e USE

- Snapshot generation requires the user to write Pascal-like procedures
in a dedicated language.

- The issue of isomorphic models does not seem to be addressed

- The performances are sensitive to the order of objects and attribute

assignments

e Alloy
- It is based on first-order relational logic.
- A specification is translated into quantifier-free boolean formulla and

feed to a SAT solver.
- Alloy is not formally object-oriented, nor does it support UML and

OCL.

Future work

MSG is not yet ready to be released, but preliminary experiments have
shown that it compares favourably w.r.t. USE.

Future work

@ Engineering the implementation
@ Improve the representation, in order to reduce the generation of
isomorphic snapshots.

@ Validation of pre/post conditions of methods supporting both
forward and backward animation.

A naive encoding of the ISP system in DLVEXxi

@ Type declarations

The -=> symbol introduce polymorphic types by listing the type
constructors (also called generators).

%% GENERAL ENCODING
type meta_type(X) --> type.
type obj(C) --> o(int).
type association(C1,C2) --> ass(assoc_name).
type mult --> m(int,int) ; star(int).

%% ISP ENCODING
type bill. type customer. type provider. type service. type surfRecord.
type attributes(C) --> rec(float) ; rec(int,string) ; rec(int).
type assoc_name --> nn.
type attribute_value --> amount(float) ; id(int) ; name(string) ;
price(float) ; rate(int).

On polymotphic types

@ Polymorphic types allow us to decouple the general representation
choices from the signature of the specific UML model

@ An UML model M can be represented by a DLVExi theory
Ty = RU Ey

where R is a general “representation theory” and Eps encodes M
in R.

@ Since every ground term must have a unique type, we introduces
annotated functions fy(...) and predicates p,(...).

In the concrete syntax, the annotations J are enclosed between
square brackets.

@ We provide a type reconstruction algorithm to find out the
annotations. If multiple annotations are possible, the system
produces an error message.

A naive encoding: Guess and Test

Live objects and links are guessed by the rules g1 and g2,
while t1 and t2 test the multiplicity constraints.

%% GENERAL ENCODING
pred object(obj(C)). %% predicate definition
pred is_class(meta_type(C)).
pred link(association(C1,C2), obj(C1),0bj(C2)).
pred is_association(association(C1,C2)).
pred mLeft (association(C1,C2),0bj(C2),int).
pred mRight (association(C1,C2),0bj(C1),int).
pred leftMult(association(C1,C2), mult).
pred rightMult(association(C1,C2), mult).
pred violates(int,mult).

encoding(Cl:type, C2:type, C:type, 0:0bj(C), 01:0bj(C1), 02:0bj(C2),

-~

A:association(C1,C2), M:mult, N:int) isunit
%% module definition
object(0) v neg(object(0)) if is_class(type([C])). %% gl
1link(A,01,02) v neg(link(A,01,02)) if %h g2
is_association([C1,C2], A) & object(01) & object(02)

exi([x], att_rec(0,x)) if object(0).
false if %h tl

leftMult([C1,C2],A,M) & object(02) & mLeft([C1,C2],A,02,N) & violates(N,M).
false if %t t2

rightMult([C1,C2],A,M) & object(01) & mRight([C1,C2],A,01,N) & violates(N,M).

A naive encoding: the ISP system

%% ISP ENCODING

%% classes

is_class(type([bill])) if true.
is_class(type([customer])) if true.
is_class(type([provider])) if true.

%% associations
is_association(ass([bill,customer],nn)) if true.
is_association(ass([bill,service],nn)) if true.
is_association(ass([bill,surfRecord],nn)) if true.

%% attributes

value([bill], This, amount(F)) if att_rec(This,rec([bill],F)).
value([customer], This, id(I)) if att_rec(This,rec([customer],I,S)).
value([customer], This, name(S)) if att_rec(This,rec([customer],I,S)).

%% multiplicities

leftMult(ass([bill,customer],nn),m(1,1)) if true.
rightMult(ass([bill,customer],nn),m(1,1)) if true.

leftMult (ass([customer,provider],nn),star(1)) if true. Gh 1..x
rightMult (ass([customer,provider],nn),m(1,1)) if true.

Some Generation Requests for the ISP system

@ Object identifiers are chosen by means of the oid Prolog predicate.

oid(provider,0). %% at most provider0

0id(bill,I) :- member(I,[1,2]). %% at most billl and bill2
oid(customer,I) :- member(I,[1,2]).
oid(service,I) :- member(I,[1,2]).

oid(surfRecord,I) :- member(I,[1,2]).

@ Attributes are settled by the attribute Prolog predicate.

attributes(bill, Obj, rec([bill]l, 100)).
%% for ever Obj of class bill, 100 is a possible value of the amount of Obj
attributes(bill, 0bj, rec([bill],200)).
attributes(customer, Obj, rec([customer],10,ted)).
attributes(service, Obj, rec([service],25)).
attributes(surfRecord, Obj, rec([surfRecord],10)).

The DLV-Complex translation

of (o ([C],I),0bj(C)) := %% o([C],I) has type obj(C)
is_type(obj(C)), 0id(C,I).

is_type(obj(C)):-
is_class_type(C).

is_class_type(C):-
is_class([C],type([C])).

is_class([bill], type([billl)).
is_class([customer], type([customer])).

0id(bill, 1). 0id(bill, 2). oid(customer, 1). oid(customer, 2).
%% GUESS CLAUSES
object([C], 0) v -object([C], 0) :-
is_class([C], type([C])), is_type(C), of(0, obj(C)).
link([C1, C2], A, X3, X4) v -link([C1, C2], A, 01, 02) :-
is_association([C1, C2], A), object([C1], 01), object([C2], 02).

Type and annotation reconstruction play a central role, since they enforce
the correct grounding of polymorphic clauses

The translation of existential clauses

An existential formula is replaced with a disjunction over the
“witness-choices” settled by the generation requests

Example

The existential clause

exi([x], att_rec(Obj,x)) if object(0Obj).
for Obj= bill is translated as

att_rec([bill]l, Obj, rec([bill], 100)) v att_rec([bill], Obj, rec([bill], 200)) :-
object ([bill]l, 0bj).

since the choiches of the rec values for bill are:

attributes(bill, 0Obj, rec([bill], 100)).
attributes(bill, Obj, rec([bill], 200)).

