
Applying ASP to UML Model Validation

Mario Ornaghi Camillo Fiorentini Alberto Momigliano and
Francesco Pagano

Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Italy

LPNMR’09 – Potsdam, September 15

Motivations

We apply ASP to model validation in a CASE setting.

The aim is to evaluate the correctness of formal specifications (models)
with respect to their requirements.

Model: UML class diagrams with constraints (e.g. in OCL)

- A diagram represents an abstraction of the problem domain
- An objects diagram represents a snapshot of the system
- legal snapshots: snapshots that satisfy the constraints

In general, model validation can be only empirical: it is performed by
comparing the formal model with the user’s expectations.

Tools for snapshot generation are crucial for model validation.

Our contribution: the MSG generator

We are developing a snapshot generator for UML models called “MSG”
(“Milano Snapshot Generator”).

It employs DLV-Complex as a generator engine (answer sets
represent the legal snapshots).

DLV-Complex = DLV + external functions, lists, . . .

To represent UML class diagrams, we introduce the intermediate
language

DLVExi = DLV-Complex + polymorphic types
+ existential clauses

Our aim is to minimize the generation of isomorphic snapshots

Validation by MSG: a quick overview

Given a UML model M an a set of Generation Requests G , MSG outputs
all the legal snapshots of M satisfying G .

The GR are needed to make the number of snapshots finite.

The intermediate language DLVExi allows us to decouple the
representation of UML models from the GR language.

Example: the Internet System Provider

A Provider offers some Service(s) at a certain price.
A Customer chooses one of these services and he is charged a
Bill according to his SurfRecord and the download rate.

The UML model
Only multiplicity constraints are used

Example: the Internet System Provider

Some Generation Requests

The GR suggest a finite set of possible object identifiers (OID) and a
finite set of attribute values, in order to get finitely many models.

Requests on OID

Possible providers: provider0

Possible customers: customer1, customer2

Possible bills: bill1, bill2

. . .

Requests on attribute values

∀c : Customer (c.id ∈ { 10, 20 })
∀c : Customer (c.name ∈ { bob, ted })
. . .

Example: the Internet System Provider

Some (non-isomorphic) snapshots generated by MSG

Snapshot 1

Snapshot 2

Validation

Do the generated snapshots fit with user’s expecations?

Yes =⇒ the specification is OK

No =⇒ the specification must be revised
(add new constraints, . . .)

Note: If no snapshots are generated, the UML model is inconsistent.

Example: the Internet System Provider

In snapshot 2, the two customers have the same id:

Fix: add to the UML model the constraint

∀c1, c2 : Customer (c1.id = c2.id =⇒ c1 = c2)

MSG architecture

MSG architecture

BOUML
Used to design UML diagrams with constraints and to generate the
corresponding XMI representations.

XMI2DLVEXI (Java)
It translates an XMI model M into a DLVExi program EM , which is
a faithful representation of M

Every legal snapshot of M is represented by an “answer set” of

EM and every “answer set” of EM represents a legal snapshot

of M.

TODLV (Prolog)
It translates the program EM and the generation requirements G
into a DLV-Complex program PM,G .

The answer sets of PM,G are the answer sets of EM that
satisfy G .

Related work

USE

- Snapshot generation requires the user to write Pascal-like procedures
in a dedicated language.

- The issue of isomorphic models does not seem to be addressed
- The performances are sensitive to the order of objects and attribute

assignments

Alloy

- It is based on first-order relational logic.
- A specification is translated into quantifier-free boolean formulla and

feed to a SAT solver.
- Alloy is not formally object-oriented, nor does it support UML and

OCL.

Future work

MSG is not yet ready to be released, but preliminary experiments have
shown that it compares favourably w.r.t. USE.

Future work

Engineering the implementation

Improve the representation, in order to reduce the generation of
isomorphic snapshots.

Validation of pre/post conditions of methods supporting both
forward and backward animation.

A naive encoding of the ISP system in DLVExi

Type declarations

The --> symbol introduce polymorphic types by listing the type
constructors (also called generators).

%% GENERAL ENCODING
type meta_type(X) --> type.
type obj(C) --> o(int).
type association(C1,C2) --> ass(assoc_name).
type mult --> m(int,int) ; star(int).

%% ISP ENCODING
type bill. type customer. type provider. type service. type surfRecord.
type attributes(C) --> rec(float) ; rec(int,string) ; rec(int).
type assoc_name --> nn.
type attribute_value --> amount(float) ; id(int) ; name(string) ;

price(float) ; rate(int).

On polymotphic types

Polymorphic types allow us to decouple the general representation
choices from the signature of the specific UML model

An UML model M can be represented by a DLVExi theory

TM = R ∪ EM

where R is a general “representation theory” and EM encodes M
in R.

Since every ground term must have a unique type, we introduces
annotated functions fJ(. . .) and predicates pJ(. . .).

In the concrete syntax, the annotations J are enclosed between
square brackets.

We provide a type reconstruction algorithm to find out the
annotations. If multiple annotations are possible, the system
produces an error message.

A naive encoding: Guess and Test

Live objects and links are guessed by the rules g1 and g2,
while t1 and t2 test the multiplicity constraints.

%% GENERAL ENCODING
pred object(obj(C)). %% predicate definition
pred is_class(meta_type(C)).
pred link(association(C1,C2), obj(C1),obj(C2)).
pred is_association(association(C1,C2)).
pred mLeft(association(C1,C2),obj(C2),int).
pred mRight(association(C1,C2),obj(C1),int).
pred leftMult(association(C1,C2), mult).
pred rightMult(association(C1,C2), mult).
pred violates(int,mult).

encoding(C1:type, C2:type, C:type, O:obj(C), O1:obj(C1), O2:obj(C2),
A:association(C1,C2), M:mult, N:int) isunit

{ %% module definition
object(O) v neg(object(O)) if is_class(type([C])). %% g1
link(A,O1,O2) v neg(link(A,O1,O2)) if %% g2

is_association([C1,C2], A) & object(O1) & object(O2)
exi([x], att_rec(O,x)) if object(O).
false if %% t1

leftMult([C1,C2],A,M) & object(O2) & mLeft([C1,C2],A,O2,N) & violates(N,M).
false if %% t2

rightMult([C1,C2],A,M) & object(O1) & mRight([C1,C2],A,O1,N) & violates(N,M).
}

A naive encoding: the ISP system

%% ISP ENCODING

%% classes
is_class(type([bill])) if true.
is_class(type([customer])) if true.
is_class(type([provider])) if true.
...

%% associations
is_association(ass([bill,customer],nn)) if true.
is_association(ass([bill,service],nn)) if true.
is_association(ass([bill,surfRecord],nn)) if true.
...

%% attributes
value([bill], This, amount(F)) if att_rec(This,rec([bill],F)).
value([customer], This, id(I)) if att_rec(This,rec([customer],I,S)).
value([customer], This, name(S)) if att_rec(This,rec([customer],I,S)).
...
%% multiplicities

leftMult(ass([bill,customer],nn),m(1,1)) if true.
rightMult(ass([bill,customer],nn),m(1,1)) if true.
leftMult(ass([customer,provider],nn),star(1)) if true. %% 1..*
rightMult(ass([customer,provider],nn),m(1,1)) if true.
...

Some Generation Requests for the ISP system

Object identifiers are chosen by means of the oid Prolog predicate.
oid(provider,0). %% at most provider0
oid(bill,I) :- member(I,[1,2]). %% at most bill1 and bill2
oid(customer,I) :- member(I,[1,2]).
oid(service,I) :- member(I,[1,2]).
oid(surfRecord,I) :- member(I,[1,2]).

Attributes are settled by the attribute Prolog predicate.

attributes(bill, Obj, rec([bill], 100)).
%% for ever Obj of class bill, 100 is a possible value of the amount of Obj

attributes(bill, Obj, rec([bill],200)).
attributes(customer, Obj, rec([customer],10,ted)).
attributes(service, Obj, rec([service],25)).
attributes(surfRecord, Obj, rec([surfRecord],10)).
...

The DLV-Complex translation

of(o([C],I),obj(C)) :- %% o([C],I) has type obj(C)
is_type(obj(C)), oid(C,I).

is_type(obj(C)):-
is_class_type(C).

is_class_type(C):-
is_class([C],type([C])).

is_class([bill], type([bill])).
is_class([customer], type([customer])).
....
oid(bill, 1). oid(bill, 2). oid(customer, 1). oid(customer, 2).
...
%% GUESS CLAUSES
object([C], O) v -object([C], O) :-

is_class([C], type([C])), is_type(C), of(O, obj(C)).

link([C1, C2], A, X3, X4) v -link([C1, C2], A, O1, O2) :-
is_association([C1, C2], A), object([C1], O1), object([C2], O2).

Type and annotation reconstruction play a central role, since they enforce
the correct grounding of polymorphic clauses

The translation of existential clauses

An existential formula is replaced with a disjunction over the
“witness-choices” settled by the generation requests

Example

The existential clause

exi([x], att_rec(Obj,x)) if object(Obj).

for Obj= bill is translated as

att_rec([bill], Obj, rec([bill], 100)) v att_rec([bill], Obj, rec([bill], 200)) :-
object([bill], Obj).

since the choiches of the rec values for bill are:

attributes(bill, Obj, rec([bill], 100)).
attributes(bill, Obj, rec([bill], 200)).

